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Motivated by quantum chemistry calculations, showing that molecular adsorption in graphene takes place on
preferential sites of the honeycomb lattice, we study the effect of an isolated impurity on the local electronic
properties of a graphene monolayer, when the impurity is located on a sitelike, bondlike, or hollowlike
position. We evaluate the local density of states �LDOS� as a function of energy on the impurity and on its
neighboring sites, as well as in reciprocal space, at an energy corresponding to a bound state, in the three cases
of interest. The latter study may be relevant to interpret the results of Fourier-transformed scanning tunneling
spectroscopy, as they show which states mostly contribute to impurity-induced variations in the LDOS. We
also estimate, semianalytically, the dependence of the condition for having a low-energy bound state on the
impurity potential strength and width. Such results are then exploited to obtain the quasiparticle lifetime and
the static conductivity in graphene in the dilute impurity limit. In particular, we recover a sublinear dependence
of the conductivity on the carrier concentration as a generic impurity effect.
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I. INTRODUCTION

Graphene is the two-dimensional allotrope of carbon,
which is characterized by a honeycomb lattice. Despite its
structural simplicity, only recently it has been obtained in
laboratory,1–3 thus giving rise to a tremendous outburst of
research activity, both among experimentalists and theoreti-
cians. Its remarkable electronic properties, largely due to its
reduced dimensionality, and its relatively high degree of
symmetry, make graphene an ideal candidate for applications
in micro and nanoelectronics. In particular, it has been re-
cently suggested that charging can be controlled at the
atomic level, thereby enabling one to tailor some of the mag-
netic properties of the system.4 On the other hand, its linear
quasiparticle dispersion relation suggests an analogy be-
tween the low-energy excitations in graphene and relativistic
massless particles, obeying Dirac-Weyl equation, thus allow-
ing the study of relativistic effects in a condensed-matter
system.5,6

Since most of the intriguing physical properties of
graphene stem from its perfect-crystal lattice, it is of interest
to study how some of these are affected by the presence of
localized impurities. It is well known that disorder can sig-
nificantly affect the electronic properties of graphene, espe-
cially when the chemical potential traverses the Dirac points.
This can be brought about not only by impurities7–9 but also
by topological defects,10 edges,11 substrate corrugations,12

and ripples.13

Isolated short-range impurities have been shown to
modify the local single-particle electronic properties of
graphene, such as the local density of states �LDOS�,7,9,11,14

and can induce Friedel oscillations.8 The role of strength,
width, and concentration of impurities in altering the local
energy spectrum has been studied theoretically.11,15 The rel-
evance of special symmetries and how they manifest them-

selves in the scattering around impurities has been empha-
sized in Ref. 16. Moreover, the study of the impurity effects
on the LDOS is relevant to analyze the experimental results
of scanning tunneling microscopy �STM�,12,17,18 and can elu-
cidate the role of correlations in the electron liquid in
graphene. In particular, it has been suggested that Fourier-
transformed scanning tunneling spectroscopy �FTSTS� re-
sults can also be instrumental to identify experimentally
monolayer and bilayer graphene.9,19

Disorder is also known to affect considerably the trans-
port properties of graphene. In particular, the presence of
disorder may explain the finite value of the conductivity in
pure graphene.20,21 In the case of graphene on a substrate, an
inhomogeneous potential distribution may be brought about
by charged impurities located close to the substrate surface.
At low electron or hole concentration, this may induce size-
able spatial fluctuations of the carrier concentration, and may
therefore justify a nonzero conductivity, even in the absence
of any gate potential.21 This has been experimentally verified
using a scanning single-electron transistor.13 Such a regime
of inhomogeneity persists beyond neutrality and character-
izes also suspended graphene samples before annealing.22

After annealing, the conductivity displays a sublinear depen-
dence on carrier concentration around zero doping, which
may be due to short-range impurities, such as point
defects.23–25

In this paper, we will be mainly concerned with the ef-
fects on the LDOS and on the conductivity of graphene due
to single or distributed impurities located in a high-symmetry
position of the honeycomb lattice. These include the sites of
the direct lattice, the position midway two neighboring car-
bon atoms, and the center of the hexagon plaquettes. Such
positions have been extensively studied also within quantum
chemical calculations, as they are expected to be favored in
the adsorption of hydrogen, water, and other simple
molecules.26

PHYSICAL REVIEW B 80, 094203 �2009�

1098-0121/2009/80�9�/094203�14� ©2009 The American Physical Society094203-1

http://dx.doi.org/10.1103/PhysRevB.80.094203


After reviewing the formalism for a single localized im-
purity in graphene in Sec. II, we will present our results for
the LDOS in the presence of a single impurity, either in the
sitelike, bondlike, or hollowlike configuration �Sec. III�. Our
results include the energy dependence of the LDOS on the
impurity site and its nearest neighbors, and the reciprocal-
lattice structure of the LDOS close to a resonance. Then, in
Sec. IV, we will generalize the above results in the case of
many impurities, in the dilute limit, within the full Born
approximation. In particular, we shall be interested in the
case in which all impurities are located in a preferential class
of lattice sites. We will derive the LDOS in reciprocal space
in the case of many impurities and discuss the dependence of
the quasiparticle lifetime on the impurity concentration. Fi-
nally, it will be shown that, close to a low-energy resonance,
disorder induces a sublinear dependence of the conductivity
on the carrier concentration, and that such an effect is rather
insensible to the impurity concentration, albeit in the dilute
limit. We summarize our results in Sec. V.

II. MODEL

We begin by reviewing the tight-binding approximation
and the T-matrix formalism for a single nonmagnetic impu-
rity in graphene.27 Within the tight-binding approximation, a
graphene monolayer in the presence of a single impurity lo-
calized at position x will be described by the Hamiltonian

H = �
k�
�k�ck�

† ck� + V0�
†�x���x� . �1�

Here, ck�
† �ck�� is a creation �annihilation� operator for a

quasiparticle with wave vector k within the first Brillouin
zone �1BZ� and band index �=1,2, �k�=Ek�−� is the tight-
binding dispersion relation for band �, measured with respect
to the chemical potential �, and V0 is a measure of the
strength of the impurity potential. Expanding the field opera-
tors �†�x�, ��x� appearing in the impurity potential with
respect to the tight-binding basis states, one finds

H = �
k�
�k�ck�

† ck� + �
kk����

V����k,k��ck�
† ck���, �2�

where

V����k,k�� = V0�k�
� �x��k����x� , �3�

and �k��x� is the Bloch wave function employed in the tight-
binding diagonalization of the pure sector of the Hamil-
tonian.

A. Tight-binding approximation

For the sake of completeness, we briefly review the
main features of the tight-binding approximation employed
in the present work. Graphene is characterized by a
honeycomb lattice, with basis vectors a1=a�3,�3� /2 and
a2=a�3,−�3� /2, where a=0.142 nm is the C–C distance.3

This is equivalent to two interpenetrating A and B triangular
sublattices with nearest-neighbor sites connected by the vec-
tors �1=a�1,�3� /2, �2=a�1,−�3� /2, and �3=a�−1,0�. Cor-

respondingly, the first Brillouin zone in the reciprocal lattice
is an hexagon with vertices in the so-called Dirac points,
K= 2�

3a �1,
�3
3 �, K�= 2�

3a �1,−
�3
3 �.

A suitable choice within the standard tight-binding ap-
proximation consists in retaining hopping and overlap terms
between nearest-neighbor sites.28 This gives rise to the two
bands

Ek� =
	t�
k�

1� s�
k�
, �4�

where the bottom and top signs apply to the valence band,
with �=1, and conduction band, with �=2, respectively. In
Eq. �4�, t=2.8 eV and s=0.07 are the nearest-neighbor hop-
ping and overlap parameters, respectively,29 and


k = �
�=1

3

eik·�� �5�

is the usual �complex� structure factor in momentum space.
In the limit s=0, one recovers the symmetry between valence
and conduction bands, Ek�=	 t�
k�.

One has still a choice to fix the functional form of the
Bloch wave functions that define the basis set implied in the
tight-binding approximation. These are linear combination of
tightly bound atomic functions and will therefore be termed
pseudoatomic wave functions in the following. The approxi-
mation of using pseudoatomic wave functions with a finite
extension, while retaining a localized impurity potential, al-
lows one to treat exactly also the case in which a short-range
impurity is located in an out-of-lattice position, as is the case
of hollowlike impurities addressed to below �Sec. III C�. Due
to the two dimensionality of the graphene sheet, we can
safely neglect their extension along the axis orthogonal to the
graphene plane, z say.

One possible choice is such that its square modulus is a
normalized Gaussian30

�g�r� =
1

2�3�

Zg

a
exp�− g

2/24� , �6�

where g=Zgr /a, and Zg can be used to tune the spatial ex-
tension of the wave function, characterized by an average
radius r̄g= �x2+y2�g

1/2=2�3a /Zg.
Another possible choice is such that its square modulus is

a normalized combination of modified Bessel functions of
second kind31

�b�r� =
1

4��
Zb

a
�2bK1�b� + b

2K0�b� , �7�

where b=Zbr /a and Zb is again a parameter related to the
spatial extension. Like the Gaussian pseudoatomic wave
function, Eq. �6�, also Eq. �7� has a bell-shaped behavior, but
decays more slowly, �b�r��b

3/4 exp�−b�, for b�1. The
expectation value of any cylindrically symmetric function
with respect to Eq. �7� is the same as the expectation value
with respect to the 2pz hydrogenic wave function with
atomic number Zb. In particular, the average radius is simi-
larly given by r̄b= �x2+y2�b

1/2=2�3a /Zb.
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In both cases, the parameters are fixed by the condition
that the nearest neighbor overlap integral yields29 s=0.07, so
that Zg=11.2 and Zb=12.8. In the case of a single impurity,
we have numerically verified that all results do not qualita-
tively depend on the particular choice of the pseudoatomic
wave function, and that any quantitative difference is within
graphical resolution. This is because the impurity effects
considered here depend mainly on the short-distance behav-
ior of ��r�. Therefore, in this paper we have chosen to
present results obtained with the Gaussian choice for the
pseudoatomic wave functions, Eq. �6�. In terms of these, the
Bloch wave function on which the tight-binding approxima-
tion is based is

�k��r� =
1

�N
�

j

��r − R j
��eik·Rj

�

, �8�

where R j
� are vectors of the �=A and B sublattices, respec-

tively.
Let �k� ��=A ,B� denote the Bloch wave functions in the

sublattice representation. These are then related to the Bloch
wave functions �k� ��=1,2� in the band representation, Eq.
�8�, by the unitary transformation

�k� = �
�=A,B

U���k��k�, �9�

where U���k� is the generic element of the matrix

U�k� =
1
�2

	 1 − 1

e−i�k e−i�k

 , �10�

and

ei�k = −

k

�
k�
, �11�

with 
k defined in Eq. �5�.

B. T-matrix formalism

We then introduce the finite-temperature Green’s func-
tions

G����k,k�,�� = − �T��ck����ck���
† �0��� , �12�

where �¯ � is a quantum statistical average with respect to H
at temperature T and T� denotes ordering with respect to the
imaginary time �. Making use of the fermionic Matsubara
frequencies ��n= �2n+1��kBT, where � is Planck’s constant
and kB is Boltzmann’s constant, one finds the usual Dyson’s
equation

G����k,k�,i�n� = �����kk�G�
0�k,i�n�

+ �
q��

G����k,q,i�n�V�����q,k��G��
0 �k�,i�n� ,

�13�

where G�0�k , i�n�= �i�n−�k��−1 is the Green’s function of the
pure system. Dyson’s Eq. �13� can be solved iteratively by
exploiting the fact that the impurity potential is factorizable
in momentum space �see Appendix A�. One finds

G����k,k�,i�n� = �����kk�G�
0�k,i�n�

+ G�0�k,i�n�T����x;k,k�,i�n�G��
0 �k�,i�n� ,

�14�

where

T����x;k,k�,i�n� =
1

N

V0�̌k�
� �x��̌k����x�

1 − V0G0�x,x,i�n�
�15�

is the generic element of the T matrix, �̌k��x�=�N�k��x� is a
rescaled basis function, and

G0�r,r�,i�n� =
1

N
�
q��

�̌q���r�G��
0 �q,i�n��̌q��

� �r�� . �16�

Equation �14� shows that the correction due to a single lo-
calized impurity vanishes as 1 /N in the thermodynamic
limit, N→�. Going back to real space by means of Eq. �16�,
one finds the imaginary-time Green’s function at position r

G�r,r,i�n� = G0�r,r,i�n� +
V0G0�r,x,i�n�G0�x,r,i�n�

1 − V0G0�x,x,i�n�
.

�17�

In what follows, we shall be interested in the LDOS �r ,��,
which is experimentally accessible through STM
measurements,12,17,18 and is related to the imaginary part of
the analytically continued Green’s function through

�r,�� = −
1

�
Im G�r,r,�� , �18�

where G�r ,r ,��=G�r ,r , i�n→�+ i0+�. It is straightforward
to observe that the chemical potential enters G��� only as an
additive constant to �. Therefore, we can set hereafter
�=0, thereby neglecting any contribution arising from
chemical or electrical doping, e.g., through a gate voltage.

Inspection of Eqs. �17� and �18� shows that the LDOS on
the impurity position �r=x� is given by

�x,�� =
0�x,��

�1 − V0 Re G0�x,x,���2 + ��V0
0�x,���2 ,

�19�

with 0�x ,�� denoting the LDOS at position r=x in the pure
case. In the limit of a vanishing unperturbed LDOS,
0�x ,��→0, one has �x ,��→V0

−1��1−V0 Re G0�x ,x ,���.
Such a circumstance is, e.g., realized below the valence
band, ����−2.48t, or above the conduction band,
����3.80t. Direct inspection of Re G0�x ,x ,�� as a
function of � �Fig. 1� leads to the existence of a bound state
outside the two bands for a wide range of potential strengths
V0. In particular, a bound state at ��0 may be formed be-
low the valence band only for some V0�0, or above the
conduction band for V0�0, the energy of such a bound state
moving farther from the bands, as �V0� increases.

For future reference, it is also of interest to quote the
expression of the LDOS close to a bound state in reciprocal
space, which reads
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��k,�� = −
1

�
Im G��k,��

=
V0

N

��̌k��x��2

�� − ��k�2
��1 − V0 Re G0�x,x,��� . �20�

In other words, Eq. �20� applies to states with a vanishing
unperturbed LDOS, i.e., to frequencies � such that
0�k ,��=0 for all wave vectors k in the 1BZ. This corre-
sponds to ����, �=0, and ����.

III. SINGLE IMPURITY

In what follows, we shall analyze the effect on the LDOS,
Eq. �18�, due to a single impurity localized in several high-
symmetry positions of the primitive cell in the graphene hon-
eycomb lattice. These include an A or B site, usually occu-
pied by a carbon atom �sitelike impurity�, the position
midway between an A and B site �bondlike impurity�, and
the position at the center of an hexagon plaquette �hollowlike
impurity�.

A. Sitelike impurities

Let us start by considering an impurity located on an A or
B site �say x=0, for definiteness�. Such an impurity pre-
serves the D3h symmetry. This could be used to model a
hydrogen impurity adsorbed on a carbon atom,16,26 or a va-
cancy �here obtained in the V0→� limit�,26,32 as could be
induced by proton irradiation.33

Figure 2 shows the LDOS on a single-sitelike impurity,
Eq. �19�, for negative as well as for positive values of the
impurity strength U0=V0 /a2, where a is the lattice step in the
limit of weak scattering ��U0��6t�. As anticipated, a bound
state forms below the valence band if U0�0, whereas a
bound state forms above the conduction band for U0�0.

From Eq. �19�, a resonance is formed at an energy �res
between the two Van Hove singularities when

1 − V0 Re G0�x,x,�res� = 0. �21�

By inspection of the � dependence of Re G0��� �Fig. 1�, it
follows that Eq. �21� is fulfilled for −1� t /U0�

1
2 . Such a

resonance is better resolved when the unperturbed LDOS
0�x ,x ,�� is weak for ��res. This is indeed the case in the
proximity of the Dirac points, where 0�x ,x ,��→0 linearly
as �→0. A special case is represented by the limit U0→�,
corresponding to a vacancy formation. In this case, the con-
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FIG. 1. �Color online� Real part of the unperturbed Green’s
function, Re G0�x ,�� �top panel�, and unperturbed LDOS,
0�x ,��=−�−1 Im G0�x ,�� �bottom panel�, for the three cases of
interest: �a� sitelike impurity �x=0�, �b� bondlike impurity
�x=�3 /2�, and �c� hollowlike impurity �x=−�3�. It should be no-
ticed that the latter two cases have been scaled by the factors indi-
cated in the caption.
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FIG. 2. �Color online� Local density of states �x=0 ,��, Eq.
�19�, on a sitelike impurity located at x=0. Top panel shows the
LDOS for U0 / t=−0.05, −0.10, −0.15, and −0.20. Bottom panel
shows the LDOS for U0 / t=0.05, 0.10, 0.15, and 0.20. In both pan-
els, we also show the LDOS in the unperturbed case �U0 / t=0�.
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dition for a resonance is fulfilled at �st, where however
the LDOS is strongly depressed.

At exactly �=0, e.g., when the chemical potential
traverses the Dirac points, the resonance becomes a true
bound state, since 0�x ,x ,��=0. The value of the impurity
potential U0 allowing a bound state at �=0 can be obtained
within a semianalytical approach �see Appendix B for de-
tails�. This is based on an expansion of Re G0�x ,x ,�=0� in
Eq. �21� at x=0. To the leading terms in the nearest neigh-
bors, one finds that the condition for having a bound state at
�=0 is

t

U0
 ��0��s��0� + 2���1�� , �22�

where ��x� is a Gaussian pseudoatomic wave function, s is
the band asymmetry parameter, and �1 the position of a near-
est neighbor to x=0 �Appendix B�. The first contribution to
Eq. �22� is due to the band asymmetry �s�0�, whereas the
second contribution is related to the wave function width,
and can be neglected for a sufficiently localized pseudo-
atomic wave function. In the limit of symmetric bands
�s=0� and localized wave functions, one recovers a bound
state at exactly �=0 in the case of a vacancy �U0=��.7,11,15

From Eq. �22� one may conclude that a bound state is formed
also in the case of a localized pseudoatomic wave function,
provided one retains a nonzero band asymmetry �s�0�, and
that this takes place for a finite value of the impurity poten-
tial �U0���, in agreement with the findings of Ref. 7. Fig-
ure 3 shows a contour plot of the LDOS in momentum space
for an impurity potential generating a bound state at �=0 for
both the valence and conduction bands. In both cases, the
largest contribution to ��k ,�� comes from the wave vectors
close to the Dirac points. Slight differences between the two

bands are due to a nonzero asymmetry parameter s.
We end Sec. III A by considering the effect of a sitelike

impurity located at x=0 on the LDOS at a neighboring site,
y=�3, say. After the appropriate analytical continuation, Eq.
�17� then yields

�y,�� 
Re G0�y,x,��Re G0�x,y,��

�Re G0�x,x,���2

�V0
−1��1 − V0 Re G0�x,x,��� , �23�

in the limit of vanishing unperturbed LDOS on the impurity,
0�x ,��→0. Therefore, while the condition for having a
bound state on a neighboring site is the same as Eq. �21�, the
relative weight with respect to the impurity site is given by
the prefactor in Eq. �23�. Figure 4 shows the LDOS on a
neighboring site �y=�3�, when a sitelike impurity is located
at x=0. The LDOS corresponding to a bound state outside
the band is larger on the impurity site than on the neighbor-
ing site. The opposite is true for the LDOS corresponding to
the resonant state between the two Van Hove singularities,
which is depressed on the impurity site than on the neighbor-
ing site. The same effect applies to the bound state between
the two Van Hove singularities.

Such a behavior for resonant states in the energy range
between the two Van Hove singularities is analogous to the
one encountered in the d-density-wave �DDW� phase, which
has been suggested as a viable description of the pseudogap
phase in the high-Tc cuprates.34,35 In the DDW phase, the
LDOS on an atomic site vanishes linearly as �→0 for the
pure system, and exhibits two Van Hove singularities, sym-
metric with respect to �=0. It has been demonstrated36,37

that a sufficiently strong localized impurity produces a reso-
nance between the two Van Hove singularities. The LDOS
associated to such a resonance in the DDW phase is larger on

FIG. 3. �Color online� Contour plots of the LDOS in momentum space, ��k ,�=0�, Eq. �20�, for the valence ��=1, left panel� and
conduction band ��=2, right panel�. Here, we are considering a sitelike impurity with U0=3.7t, thus giving rise to a bound state at �=0.
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a nearest neighbor, than on the impurity site, in close analogy
to what is here shown for an impurity in graphene, and in
agreement with the findings of Ref. 14. In both cases, the
quasiparticle bands are characterized by two inequivalent
minima �the two Dirac points, in the case of graphene�, so
that scattering processes due to short-range impurities can be
classified as intravalley or intervalley, depending on whether
initial and final states lie close to the same or to different
extrema, respectively. The peculiar behavior of the LDOS
corresponding to resonant states at �0 is related to inter-
valley scattering at variance with bound states outside the
bandwidth. It is also relevant to note, in this context, that
single-impurity scattering around a localized impurity has
been suggested as a tool to distinguish between a DDW and
a pseudogap phases, within the precursor pairing scenario.38

B. Bondlike impurities

An impurity located between an A and B site only pre-
serves the C2v symmetry and may be used to model an oxy-
gen impurity between two carbon atoms.16 This corresponds
to three inequivalent positions in the real lattice, although
local effects on each of them are related by rotations of mul-
tiples of 2� /3. In the following, for definiteness, we shall
therefore be concerned with a bondlike impurity located at
x=�3 /2.

With reference again to Eq. �19�, one finds a markedly
different � dependence of G0�x ,x ,�� at x=�3 /2 �Fig. 1�
with respect to the site like case �x=0�. Indeed, while
Im G0��� is depressed with respect to the site like case, as a
consequence of the finite extent of the Gaussian pseudo-
atomic wave functions, Re G0��� attains a finite value at
�=�� �Fig. 1�. This implies the existence of bound states
above the conduction band only for U0�8t while bound
states below the valence band still exists for any U0�0. On
the other hand, resonances between the two Van Hove sin-
gularites close to �=0 are possible for 2�U0 / t�20, i.e.,
within a finite range of positive values of the impurity
strength.

An expansion of Re G0 in Eq. �21�, where now x=�3 /2,
leads to the estimate

t

U0
 �Ab + 2s��2��3/2� �24�

for the impurity potential required to generate a bound state
at �=0, where Ab�0.67 �Appendix B�. As in the sitelike
case, one can recognize a term due to the asymmetry be-
tween the two bands �s�0�.

Figure 5 compares the LDOS for a sitelike �top row pan-
els� and a bondlike �bottom row panels� impurity, both evalu-
ated on the same position as the impurity �left column pan-
els� and on a nearest-neighbor lattice site �right column
panels�, for several values of the potential strength. One finds
quite a different behavior in the two cases. As U0 increases

toward Ũ0, i.e., the value of the impurity strength giving rise
to a bound state at �=0, the LDOS on the impurity site, and
the weight of the Van Hove singularities, decreases, as ex-
pected. On the other hand, the bound state at �=0 becomes
sharper and more pronounced in the bondlike case, whereas
it becomes suppressed in the sitelike case. Another remark-
able difference is the presence, in the bondlike case, of a
wide resonant state in the conduction band for 4t�U0�8t,
which is completely absent in the sitelike case. This can be
traced back to the different � dependence of Re G0 in Eq.
�21� in the two cases. Figure 5 also compares the LDOS for
the sitelike and bondlike cases but now evaluated on a
nearest-neighbor lattice site to the impurity position. Again,
the Van Hove singularities become smoother, as U0 increases

toward Ũ0. The suppression of the singularities due to an
increase in the potential strength is enhanced in the bondlike
case than in the sitelike case.

Finally, Fig. 6 shows the LDOS in momentum space, Eq.
�20�, in the case of a bondlike impurity at x=�3 /2, for the
valence and conduction bands. Figure 6 refers to a potential
strength of U0=5.1t, thus giving rise to a bound state at
�=0. Similar pictures, but rotated of multiples of 2� /3,
would be obtained in the other, inequivalent, bondlike posi-
tions. As in the sitelike case, Fig. 3, one finds that the points
in k space providing the largest contribution to ��k ,�� are
those closer to the Dirac points but now with a reduced sym-
metry. In particular, ��k ,�� is not invariant with respect to
transformations of the C6v point group because of the
squared modulus of the pseudoatomic wave functions in Eq.
�20�.
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FIG. 4. �Color online� Showing the LDOS for a sitelike impurity
at x=0 �a� on the impurity site, �b� on a nearest-neighbor site, and
�c� on a generic lattice site in the unperturbed case. Top panel refers
to low potential strength �U0=1.1t� while bottom panel refers to
large potential strength �U0=3.7t�.
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C. Hollowlike impurities

The last case considered here corresponds to having a
single impurity located at the center of an hexagon plaquette,
x=−�3, say. This is the highest symmetry position in the
carbon honeycomb lattice and indeed the point symmetry
D6h is preserved. Inspection of Fig. 1 for the � dependence
of Re G0��� and 0��� shows that the unperturbed LDOS is
severely depressed �some three orders of magnitude lower�
than the LDOS in the sitelike case. Moreover, as a conse-
quence of the overall behavior of Re G0���, one has a bound
state below the valence band for all negative values of U0,
whereas one has a bound state above the conduction band for
relatively large positive values of the impurity strength,
U0�104t. On the other hand, the relatively low value of
0��� allows the formation of well-resolved resonant states
close to �=0, for 1.5�103t�U0�1.1�104t. Expanding
Re G0 in Eq. �21�, where now x=−�3, yields in this case the
estimate

t

U0
 �Ah + 2Bhs��2��3� �25�

for the impurity potential required to generate a bound state

at �=0, where Ah�2.35 and Bh=3 �Appendix B�. As in the
previous cases, the main term persists also in the limit of
perfect band symmetry �s=0�.

Figure 7 shows the LDOS for a hollowlike impurity, both
on top of the impurity site, and on an adjacent lattice site, for
several potential strengths. At variance from the previous
two cases, it is apparent that resonant states are sharper in the
nearest-neighbor site than on top of the impurity position.
Analogously to the bondlike case, there are resonant states
developing in the high conduction band, which are however
better defined.

Figure 8 shows the LDOS in momentum space for a hol-
lowlike impurity giving rise to a bound state at �=0, Eq.
�25�. At variance with the previous cases, one may notice
that the k states contributing most importantly to ��k ,��
are the same as those involved in building up the unper-
turbed LDOS. Indeed, in the conduction band ���0�, the
largest contributions to 0�−�3 ,−�3 ,�� come from the Van
Hove singularities and the centers of the sides of the first
Brillouin zone. Similarly, in the valence band ���0�, the
largest contributions to 0�−�3 ,−�3 ,�� come from the band
bottom, i.e., from k points close to the � point. This can be
ultimately be traced back to the extended width of the Gauss-
ian pseudoatomic wave function here employed.
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FIG. 5. �Color online� Local density of states for a sitelike impurity �top row panels� and a bondlike impurity �bottom row panels�. Left
panel on top refers to the LDOS evaluated on the same position of a sitelike impurity �r=x=0�; right panel on top refers to the LDOS for
a sitelike impurity �x=0�, evaluated on a nearest-neighbor lattice site �r=�1�. Left panel on bottom refers to the LDOS evaluated on the same
position of a bondlike impurity �r=x=�3 /2�; right panel on bottom refers to the LDOS for a bondlike impurity �x=�3 /2�, evaluated on a

nearest-neighbor lattice site �r=0�. The potential strengths are �a� U0=0, �b� U0=0.05Ũ0, �c� U0=0.10Ũ0, �d� U0=0.25Ũ0, �e�
U0=0.50Ũ0, �f� U0=0.75Ũ0, �g� U0= Ũ0, and �h� U0=2.00Ũ0, where Ũ0 is the value of U0 yielding a bound state at �=0.
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IV. MANY IMPURITIES

While single-impurity effects are, in principle, observable
through STM measurements,12,17,18 real samples usually con-
tain a sizeable amount of impurities, which are responsible
of sensible modifications of both thermodynamic and trans-
port properties. Therefore, we will here exploit the results of
Sec. III for a single impurity, to study the effect of Nimp
impurities on a graphene monolayer. We will assume that �i�
the position of all impurities differ by a vector of the direct
lattice; in other words, there is a preferential kind of impurity
location, i.e., all impurities are either sitelike, bondlike, or
hollowlike, according to the classification given in the Sec.
III; �ii� impurities are independent, i.e., the average distance
between two impurities is larger than the quasiparticle coher-
ence length, so that interference effects can be neglected; �iii�
their number is sufficiently large �Nimp�1�, so that their ef-
fect is appreciable on bulk properties in the thermodynamic
limit, but the impurities are sufficiently diluted
�nimp=Nimp /N�1�. In these limits, while a standard averag-
ing procedure over the position configurations of the impu-
rities restores the translational invariance of the Green’s
function,

G���
imp�k,k�,i�n� = �kk�G���

imp�k,i�n� , �26�

the eigenstates of the pure Hamiltonian are expected to ac-
quire a finite lifetime induced by disorder. This can be for-
mally achieved by relating Gimp�k , i�n�, now a matrix with
respect to the band indices, to the single-impurity Green’s
function G0�k , i�n� discussed in Sec. III through a Dyson’s
equation analogous to Eq. �13�, but now involving the proper
self-energy matrix27 ��k , i�n�

FIG. 6. �Color online� Contour plots of the LDOS in momentum space, ��k ,��, Eq. �20�, for the valence ��=1, left panel� and
conduction band ��=2, right panel�. Here, we are considering a bondlike impurity with U0=5.1t, thus giving rise to a bound state at
�=0.
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FIG. 7. �Color online� Local density of states for a hollowlike
impurity �x=−�3� on the same site as the impurity �top panel,
r=x� and on a nearest-neighbor lattice site �bottom panel, r=0�.
The potential strengths are �a� U0=0, �b� U0=0.10Ũ0, �c�
U0=0.25Ũ0, �d� U0=0.50Ũ0, �e� U0=0.75Ũ0, �f� U0= Ũ0, �g�
U0=1.50Ũ0, and �h� U0=2.00Ũ0, where Ũ0 is the value of U0

yielding a bound state at �=0.
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Gimp�k,i�n� = G0�k,i�n� + G0�k,i�n���k,i�n�Gimp�k,i�n� .

�27�

Within the full Born approximation �FBA�,27 which is valid
in the limit of small impurity concentration, nimp

2 �nimp, one
finds

�����k,i�n� = nimp

V0�̌k�
� �x��̌k���x�

1 −
V0

N
�
q��

��̌k���x��2G��
0 �q,i�n�

, �28�

where we are assuming that all impurities occupy equivalent
lattice positions. Comparing Eq. �28� with Eqs. �15� and
�16�, it is possible to relate the proper self-energy within the
FBA to the T matrix for the same kind of impurity, through

���� = NimpT����x;k,k�,i�n� . �29�

Equation �29� therefore enables us to generalize most of the
results derived in Sec. III to the case of many impurities, all
located within a preferential class of lattice positions.

A. LDOS

We begin by discussing the effect of many impurities on
the local density of states in reciprocal space. This can be
obtained by inverting Eq. �27� for Gimp�k , i�n� and then per-
forming the usual analytical continuation. Most properties
can be derived by describing the behavior of the analytically
continued proper self-energy, which in all of the three cases
of interest can be written as

��k,�� = nimp
V0W�k�

1 − V0G0�x,x,��
, �30�

where x=0, �3 /2, or −�3 in the sitelike, bondlike, or hollow-
like case, respectively, and W�k� is a matrix form factor ex-
plicitly given by

W���
�s� �k� =

1

2
��̌k�

� �0��̌k���0� + �̌k�
� ��3��̌k����3�� , �31a�

W���
�b� �k� =

1

3�
�=1

3

�̌k�
� ���/2��̌k�����/2� , �31b�

W���
�h� �k� = �̌k�

� �− �3��̌k���− �3� �31c�

in the sitelike, bondlike, and hollowlike cases, respectively.
We are here assuming that the impurities are equally distrib-
uted among the A and B sites, in the sitelike case, and among
the three classes of � bonds, in the bondlike case.

Both in the sitelike and in the bondlike cases, direct in-
spection of the solution of Eq. �27� shows that Gimp�k ,�� is
nearly diagonal in the diluted limit �nimp

2 �nimp�. Therefore,
an eigenstate of the unperturbed Hamiltonian labeled by
wave vector k and band index � acquires a finite lifetime �k�,
which, e.g., in the sitelike case and in the limit of low LDOS
is given by

�k�
−1  �nimpV0

2W���k��0,� = �k�� , �32�

where �x ,�� is the LDOS with a single impurity, Eq. �19�.

FIG. 8. �Color online� Contour plots of the LDOS in momentum space, ��k ,��, Eq. �20�, for the valence ��=1, left panel� and
conduction band ��=2, right panel�. Here, we are considering a hollowlike impurity with U0=3.8�104t, thus giving rise to a bound state at
�=0.
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For impurity potentials close to the condition for a well-
defined resonance at �0 in the single-impurity case, Eq.
�21�, in the dilute limit, one gets for the LDOS in reciprocal
space close to a Dirac point

��k,�� 
Ak�

�� − �k� + Bk��� − �k�̄��2 + �2Ak�
2 , �33�

where �̄=2 when �=1, and �̄=1 when �=2, and

Ak� = nimpV0
2W���k���0,��� �1 −

W12�k�W21�k�
W11�k�W22�k�� ,

�34a�

Bk� =
W12�k�W21�k�

W
�̄�̄

2 �k�
. �34b�

The behavior of the LDOS in reciprocal space is therefore
quite different from the unperturbed case, which would be
characterized by a Dirac delta peaked along closed contours
around the Dirac points.

The case in which all impurities are located in a hollow-
like position, Eq. �31c�, is quite different from the previous
two cases, Eqs. �31a� and �31b�. This is due to the fact that
the form factors W�k� defined in Eq. �31c� fulfill the addi-
tional identity W11�k�W22�k�−W12�k�W21�k�=0.

While the Born approximation holds for low impurity
concentration, nimp

2 �nimp, one has to distinguish two re-
gimes. For moderately large impurity concentrations, nimp
� t�Im G0�−�3 ,�res��, for an impurity potential close to what
would be a resonance in the single-impurity case, one finds a
nearly diagonal Green’s function, whose nonzero matrix el-
ements are given by

G��
imp �� − ��k +

W���k�
W�̄�̄�k�

�� − ��̄k�

+
i

�

W���k�

W
�̄�̄

2 �k�

�� − ��̄k�2

nimpV0
2�− �3,���−1

. �35�

In the same limit, for an impurity potential giving rise to a
resonance at exactly �=0, the situation is even more dra-
matic, since

G��
imp �− ���k +

W���k�
W�̄�̄�k�

��̄k� + i��−1

, �36�

where � is a positive infinitesimal. On the other hand, for
nimp� t�Im G0�−�3 ,�res��, one finds

G��
imp  �� − ��k + i�nimpV0

2�− �3,��W���k��−1. �37�

The different behavior with respect to the previous two cases
follows from the fact that in the hollowlike case the Born
approximation performs an average with respect to impurity
positions all of the same kind, at variance, e.g., with the
sitelike case, where impurities can be added either in the A or
in the B sublattices. This is likely to produce an additional
dephasing among contributions arising from inequivalent lat-
tice positions in the sitelike or bondlike cases, with respect to

the hollowlike case, thereby resulting in an increasing in-
verse lifetime with increasing impurity concentration, al-
though only in the moderately low impurity concentration,
Eq. �35�. One however recovers the physically expected be-
havior at low impurity concentrations, i.e., a vanishing in-
verse lifetime with increasing impurity concentration, Eq.
�37�.

B. Conductivity

We end this section by considering the effect of many
short-range impurities on the conductivity. As described
above, we are mainly concerned with the case in which all
impurities are located in the same class of lattice positions,
and we will here focus on the sitelike case, even though, as
described in Sec. IV A, the analysis presented here is actu-
ally more general, as it qualitatively applies also to the bond-
like case, at least for � between the two Van Hove singulari-
ties. Again, we will assume the dilute regime, nimp

2 �nimp, so
that the full Born approximation holds.

Within linear-response theory, the conductivity � is re-
lated to the current-current correlation function through a
Kubo formula

�lm��,T;�� =
ie2n

m�
�lm +

i

��NAcell
 ̃lm

R �0,0,�� , �38�

where n is the electron density, � is the frequency of the
external electric field, Acell is the area of a primitive cell, and

 ̃lm
R �k ,q ,�� is the �l ,m� component of the Fourier transform

of the retarded current-current correlation tensor. We are
mainly interested in the dissipative part of the conductivity
tensor, i.e., its real part. For the longitudinal part �=Re �xx,
one has

���,T;�� = −
1

��NAcell
Im  ̃xx

R �0,0,�� , �39�

where  ̃lm
R is the retarded version of

 ̃lm�k,q,�� = − �T��J̃l
��k,��J̃m

��q,0��� , �40�

and J̃l
��k ,�� denote the Fourier transform of the paramag-

netic component of the current-density vector, at the imagi-

nary time �. Expanding J̃l
��k ,�� in terms of the eigenstates of

the unperturbed Hamiltonian, and making use of the results
of Appendix C, one finds

 ̃xx�0,0,�� = e2 t2a2

�2 �
kk�

������

hx,���k�hx,�����k��

��T��ck�
† ��+�ck����ck���

† �0+�ck����0��� , �41�

where the matrix elements hm,���x� are defined in Appendix
C. One is now in the position to make use of Wick’s theo-
rem. We further make the approximation to treat the one-
body Green’s functions within the FBA, and perform the
required analytical continuation, to obtain

PELLEGRINO, ANGILELLA, AND PUCCI PHYSICAL REVIEW B 80, 094203 �2009�

094203-10



 ̃xx
R �0,0,�� = 2e2 t2a2

�2 �
k

������

hx,���k�hx,�����k��
−�

� d!

2�i�

���nF�! + �� − nF�!��G���
imp��k,!�G���

imp�k,! + ��

+ nF�!�G���
imp�k,!�G���

imp�k,! + ��

− nF�! + ��G���
imp��k,!�G���

imp��k,! + ��� , �42�

where nF��� is the Fermi function and the factor of 2 takes
into account for spin degeneracy.

We next make a further approximation, i.e., we assume
that the impurity Green’s functions are diagonal in the band
index, G���

imp�k ,������G��
imp�k ,��. Such an approximation

is justified in the dilute limit, and amounts to treat the effect
of disorder as a perturbation to the pure case, whose main
effect is that of adding a finite lifetime to the eigenstates of
the unperturbed Hamiltonian.

In the static limit ��→0� and at T=0, Eq. �39� yields the
conductivity as a function of the chemical potential, which
can be decomposed in an inter and intraband contribution,
�dc���=�inter���+�intra���, given by

�inter���
�0

= −
1

�0
2

1

N
�
k

hx,12�k�hx,21�k�

� Im G11
imp�k,0�Im G22

imp�k,0� , �43a�

�intra���
�0

= −
1

�0
2

1

N
�

k,"=1,2
�hx,""�k�Im G""

imp�k,0��2,

�43b�

where �0=�e2 / �2h� is proportional to the quantum of con-
ductivity and �0

−2=16t2 / �3�3��2�. One may expect that the
interband contribution, Eq. �43a�, only becomes comparable
with the intraband contribution, Eq. �43b�, when �0, i.e.,
when the valence and conduction bands overlap, owing to
the disorder-induced energy spread. Away from neutrality
��=0�, and for a given impurity potential strength U0, an
increase in the Fermi-surface width produces an increase in
the conductivity. Such an increase is however rather slow,
close to the energy values where the LDOS with a single
impurity is maximum, where the backscattering due to the
impurities is more effective. Such a sublinear increase in �dc
as a function of the carrier concentration n occurs for values
of U0 giving rise to resonant states close to �=0 and does
not depend on the value of nimp. Such a behavior is numeri-
cally confirmed in Fig. 9, for various values of nimp and U0,
and is in good qualitative agreement with the experimental
results.22 The asymmetry between the particle �n�0� and
hole �n�0� regimes is partly due to the band asymmetry
�s�0�, but is mainly due to the effect of impurities, which is
different depending on the sign of �. Both in the valence and
conduction bands, however, one observes the occurrence of a
maximum and then a decrease in �dc when � attains the
value corresponding to a Van Hove singularity, where the
Fermi surface is maximally extended and traverses an elec-
tronic topological transition. A comparison between the two

panels in Fig. 9 shows that the nonmonotonic behavior of �dc
is generic for all impurity concentrations, but rather depends
on the impurity potential U0. The similarity between Fig. 9
and the concentration dependence of the conductivity mea-
sured in suspended graphene after annealing surmises that
scattering due to short-range impurities is relevant to deter-
mine the transport properties of these graphene
samples.23,24,39

V. CONCLUSIONS

We have analyzed the effects of a single, localized impu-
rity on the local electronic properties of a graphene mono-
layer. Specifically, we have considered an isolated impurity
located on high-symmetry positions of the honeycomb lat-
tice, such as the sitelike, bondlike, and hollowlike positions.
While the electronic properties of the pure system have been
treated within the tight-binding approximation, but allowing
for asymmetry between valence and conduction bands, the
effect of the impurity has been modeled through a Gaussian
pseudoatomic wave function, even though more general
functional forms have been taken into account. Moreover,
the tight-binding scheme employed in this work does not
suffer from the “cone approximation,”11,15 thereby enabling
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FIG. 9. �Color online� Conductivity �dc as a function of the
carrier concentration n in graphene in the presence of many sitelike
impurities. The upper panel refers to a value nimp=10−2 of the im-
purity concentration while the lower panel is characterized by
nimp=10−3. The impurity potentials under consideration are �a�
U0=0.35Ũ0, �b� U0=0.50Ũ0, �c� U0= Ũ0, �d� U0=10.00Ũ0, �e�
U0=−Ũ0, where Ũ0 is the potential strength giving rise to a bound
state at �=0.
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one to treat both low and high energies within the band with
the same degree of accuracy.

We have evaluated the local density of states as a function
of energy on the impurity site and on its nearest-neighbor
locations, and as a function of wave vector in reciprocal
space, close to a resonance. The latter may be of relevance to
interpret FTSTS measurements around an impurity. In par-
ticular, it has been shown that the main contributions to the
impurity-induced modification of the LDOS come from
wave vectors close to the Dirac point, in the sitelike and
bondlike cases, while the same states are involved in deter-
mining the LDOS both in the unperturbed case and in the
case of a hollowlike impurity. Moreover, it has been sug-
gested that FTSTS spectra can be used to distinguish be-
tween different types of impurities, in particular, as far as the
impurity potential range is concerned.9

We have determined semianalytically the condition on the
impurity strength for having a bound state at �=0 in the
three cases of interest. In particular, in the sitelike case, it is
shown that the weight associated with a bound state between
the two Van Hove singularities is larger for the LDOS on a
neighboring site than on the impurity site itself. Such a be-
havior is analogous to the one predicted for the
d-density-wave state of high-Tc superconductors and can be
attributed to the different contributions coming from intra
and intervalley impurity scattering.

Our results for the single-impurity case have been ex-
ploited to discuss the effect of distributed impurities, all lo-
cated in a preferential class of lattice sites. Such a generali-
zation has been derived within the full Born approximation
and applies to the dilute limit. In particular, we have esti-
mated the quasiparticle lifetime associated to a finite impu-
rity concentration and the behavior of the LDOS in recipro-
cal space. Within linear-response theory, we have also
evaluated the static conductivity. One can again distinguish
an intra and an interband contribution, the latter being size-
able only close to zero carrier concentration, i.e., when the

two bands appreciably overlap. Moving away from neutral-
ity, one recovers a nonmonotonic dependence on the carrier
concentration, characterized by a sublinear increase close to
�=0, as is observed experimentally in suspended graphene
samples after annealing. Such a feature is generic, in the
sense that it applies to all impurity concentrations under
study, and rather depends on the impurity strength.
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APPENDIX A: DYSON EQUATION FOR SEPARABLE
IMPURITY POTENTIAL

Here, we briefly derive Dyson’s equation, Eq. �14�, in the
case of a separable impurity potential, Eq. �3�. Inserting our
Ansatz for the potential, Eq. �3�, into Eq. �13�, and iterating,
one may express the Green’s function G����k ,k� , i�n� as a
series,27

G����k,k�,i�n� = �
�=0

�

G���
��� �k,k�,i�n� , �A1�

whose first and successive terms are given iteratively by

G���
�0� �k,k�,i�n� = �����kk�G�

�0��k,i�n� �A2a�

G���
��� �k,k�,i�n� = G���

��−1��k,k�,i�n� + V0�
q��

G���
��−1�

��k,q,i�n��q��
� �x��k����x�G��

�0��k�,i�n� .

�A2b�

This leads to the series

G����k,k�,i�n� = �����kk�G�
�0��k,i�n� + V0G��0��k,i�n��k�

� �x��k����x�G��
�0��k�,i�n�

+ V0G��0��k,i�n��k�
� �x���

q��

V0�q��
� �x�G��

�0��q,i�n��q���x���k����x�G��
�0��k�,i�n� + ¯ + V0G��0��k,i�n��k�

� �x�

���
q��

V0�q��
� �x�G��

�0��q,i�n��q���x���−1
�k����x�G��

�0��k�,i�n� + ¯ , �A3�

which is recognized as a geometric series, whose sum can be
cast in the form of Eq. �14�.

APPENDIX B: EXPANSION OF THE BLOCH WAVE
FUNCTIONS IN THE SUBLATTICE REPRESENTATION

At the origin of the A sublattice, r=0 say, the Bloch wave
functions can be expanded as

�kA�0� = �A
�0� + �A

�1�#k
�1� + �A

�2�#k
�2� + ¯ , �B1a�

�kB�0� = �B
�1�
k

�1� + �B
�2�
k

�2� + ¯ , �B1b�

where #k
�n� and 
k

�n� are basis functions of the trivial irreduc-
ible representation of the point group D6h and D3h, respec-
tively. In particular, one finds 
k

�1��
k, Eq. �5�, while
#k

�1��#k, with
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#k = �
j

�eik·Rj , �B2�

where the prime restricts the summation to all next-nearest
neighbors in the direct lattice, i.e., �R j�=�3a.

Because of the rapid decrease in the Gaussian pseudo-
atomic wave function, Eq. �6�, one may safely truncate the
expansions, Eqs. �B1�, to the first terms, thereby obtaining

�kA�0� 
1

�N
��0� , �B3a�

�kB�0� 
1

�N
���1�
k. �B3b�

The latter can be used in the expansion of Re G0�x ,x ,�
=0� appearing in the resonance condition, Eq. �21�, which
for a sitelike impurity reads

Re G0�x,x,0� =
s

t
�
k�

��k��x��2

+
1

t
�
k
� 1


k
�kA

� �x��kB�x� + H.c.� .

�B4�

Inserting Eqs. �B1� in Eq. �B4� and �21�, one eventually ob-
tains the estimate Eq. �22� for the impurity strength required
to develop a resonance at �=0 in the sitelike case.

A similar expansion holds in the bondlike and in the hol-
lowlike cases, Eqs. �24� and �25�, respectively, involving the
constants

Ab = −
1

N
�
k

�ei�k·�3−�k� + H.c.�  0.67, �B5a�

Ah =
1

N
�
k

�e2i�k
k + H.c.�  2.35, �B5b�

Bh =
1

N
�
k

�
k�2 = 3, �B5c�

where ei�k is defined by Eq. �11�.

APPENDIX C: CURRENT-DENSITY VECTOR WITHIN
THE TIGHT-BINDING APPROXIMATION

Here, we summarize some of the results employed to de-
rive the expression of the conductivity in Sec. IV B within
the tight-binding approximation outlined in Appendix B. We
begin by reminding the explicit expression of the Fourier
transform of the paramagnetic component of the density cur-
rent vector in reciprocal space27

J̃��k� = −
e

2m
� dq

�2��2 �2q + k�cq
†ck+q. �C1�

In the homogeneous limit �k=0�, one has40

J̃��0� =
e

i�
�H,r� , �C2�

where H is the system’s Hamiltonian including the impurity
contribution. Exploiting Eq. �C2�, one finds

�k"�J̃��0��k�#� = ie
ta

�
�k�,k+GeiG·�#h"#�k� , �C3�

where " ,#� �A ,B�, G is a vector of the reciprocal lattice,
and �#=0 if #=A, and �#=�3 if #=B. Due to the discrete
translational invariance and the hermiticity of the current-
density operator, the adimensional matrix elements h"#�k�
fulfill the additional properties

hAA�k� = hBB�k� , �C4a�

hAA�k� = − hAA�− k� , �C4b�

hAB�k� = − hBA�− k� . �C4c�

Moreover, the off-diagonal elements afford the explicit ex-
pression

hAB�k� = −
i

a
�k
k =

1

a
�
�=1

3

��eik·��, �C5�

to leading order in the overlap parameter s, where use has
been made of Eq. �5�, which, together with Eq. �C4c�, yields
the off-diagonal terms of the matrix elements.

In order to find the diagonal terms, it is useful to observe
that the pseudoatomic wave functions introduced in Appen-
dix B are cylindrically symmetric. This implies the following
overlap and dipole element for pseudoatomic wave functions
centered on nearest-neighbor sites

� dr��r���r	 ��� = s , �C6a�

� dr��r�r��r	 ��� = �
1

2
s��, �C6b�

where s is the band asymmetry parameter �Appendix B� and
�=1,2 ,3, or, more compactly,

� dr��r�r��r − r�� =
1

2
r�� dr��r���r − r�� . �C6c�

Making use of Eq. �C6b�, one eventually finds

h""�k� = −
i

a

s

2
�k#k =

s

2a
�
�=1

3

�
m=1,m��

3

��� − �m�eik·���−�m�,

�C7�

with #k given by Eq. �B2�.
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